Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Физический портал для школьников и абитуриентов

Вы здесь

Подготовка к олимпиаде. Методы расчета резисторных схем постоянного тока. 1.4. Расчет эквивалентных сопротивлений бесконечных цепей

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Методы расчета резисторных схем постоянного тока

1.4. Расчет эквивалентных сопротивлений бесконечных цепей

Особую группу образуют задачи на расчет эквивалентных сопротивлений бесконечных цепей. Как правило, эти цепи симметричны и во многих случаях содержат одинаковые элементы (резисторы). Рассматриваемые задачи можно разбить на три группы: а> линейные (одномерные); б) плоскостные (двумерные); в) объемные (трехмерные). Эвристические приемы решения подобных задач просты и достаточно оригинальны. Причем последние два типа задач решаются только с помощью искусственного приема, содержание которого будет рассмотрено ниже.

1.4.1. Расчет эквивалентных сопротивлений линейных бесконечных цепей

Найдем эквивалентное сопротивление типичной линейной бесконечной цепи резисторов, состоящей из повторяющихся элементов (секций), в типичной задаче.

Задача 15. Найдите эквивалентное сопротивление бесконечной цепочки (рис.), которая состоит из одинаковых резисторов сопротивлением R каждый.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Решение (типовое, алгоритм). Для нахождения эквивалентного сопротивления цепи необходимо выделить общую секцию, которая бесконечно повторяется. Вполне очевидно, что если отделить ее от цепи, то общее сопротивление этой цепи не изменится, т.к. число элементов (секций) бесконечно. В силу вышесказанного, выделив повторяющуюся секцию в цепи и заменив сопротивление, остальной цепи искомым сопротивлением Rх, получим эквивалентную схему (рис.).

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Найдем сопротивление цепи, предварительно записав выражение для Rх через Rx. Опуская промежуточные выкладки, получим:

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

откуда получим ответ:

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Рассмотрим еще одну подобную задачу.

Задача 16. Найдите эквивалентное сопротивление бесконечной цепочки (рис.), которая состоит из одинаковых резисторов сопротивлением R каждый.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Решение. Применим точно такой же прием, но с другой повторяющейся секцией (рис.).

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

После аналогичных расчетов получим:

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Отсюда легко записать ответ:

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Можно сформулировать более сложные задачи, решение которых сводится к рассмотренным выше алгоритмам.

Задача 17. Найдите эквивалентное сопротивление между точками А и В бесконечной цепочки (рис.), которая состоит из одинаковых резисторов сопротивлением R каждый.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Решение. Эквивалентное сопротивление цепи равно сопротивлению двух одинаковых и параллельно соединенных резисторов, сопротивления которых равны (см. решения задач 15 и 16): справа

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Тогда после простых расчетов легко получить ответ:

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Задача 18. Найдите эквивалентное сопротивление между точками А и В бесконечной цепочки (рис.), которая состоит из одинаковых резисторов сопротивлением R каждый.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Решение. Эквивалентное сопротивление цепи равно сопротивлению двух одинаковых и параллельно соединенных резисторов сопротивлением

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

каждый (см. решение задачи 16). Отсюда легко получить ответ:

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Задача 19. Найдите эквивалентное сопротивление между точками А и В бесконечной цепочки (рис.), которая состоит из одинаковых резисторов сопротивлением R каждый.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Решение. Эквивалентное сопротивление цепи равно сопротивлению четырех резисторов, соединенных между собой в цепь, которая изображена на рис.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

(см. решения задач 15 и 16). Отсюда искомое эквивалентное сопротивление цепи между точками А и В:

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Задача 20. Найдите эквивалентное сопротивление между точками А и В бесконечной цепочки (рис.), которая состоит из одинаковых проволочных резисторов сопротивлением R каждый.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Решение. Эквивалентная схема представлена на рис.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Повторяющаяся секция состоит из четырех резисторов. Полное сопротивление цепи находим, полагая RAB = Rх. Опуская промежуточные выкладки, получим

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

откуда следует, что

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Второй корень уравнения отрицательный и не имеет смысла. Окончательный результат:

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Рассмотрим более трудную задачу, решение которой предполагает предварительное использование метода исключения пассивных элементов цепи.

Задача 21. Найти эквивалентное сопротивление между точками А и В бесконечной цепочки (рис. а), которая состоит из одинаковых проволочных резисторов сопротивлением R каждый.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Решение. Чтобы найти эквивалентное сопротивление цепи, необходимо сначала выделить общую секцию, которая бесконечно повторяется. Понятно, что если отделить ее от цепи, то общее сопротивление этой цепи не изменится. Выделить повторяющуюся секцию в рассматриваемой цепи можно, но заменить сопротивление остальной части цепи искомым сопротивлением Rх нельзя, т.к. оставшаяся часть имеет четыре соединительных провода. Если посмотрим на каркас слева, то получим изображение цепи в перспективе, приведенное на рисунке б.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Из симметрии этого рисунка видно, что потенциалы точек, обозначенных цифрой 1, одинаковы и равны потенциалам точек, обозначенных цифрой 2. Исключим из рассмотрения пассивные резисторы, соединяющие точки 1 и 2 (рис. в).

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Между точками С и D (рис. в) находится фигура, эквивалентное сопротивление которой равно искомому, т.к. цепь бесконечна. Обозначим искомое сопротивление через Rх (рис. г)

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

и получим (аналогично решению задачи 15)

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

откуда следует, что

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Второй корень уравнения отрицательный и не имеет смысла. Окончательный результат:

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

При решении задач с плоскостными и объемными цепями используется несколько другой подход.

Источник

Как определить эквивалентное сопротивление исследуемой цепи

Расчет эквивалентного сопротивления электрической цепи

Любое последовательное соединение можно преобразовать к последовательному соединению одного эквивалентного резистора и одного источника ЭДС. Причем, сопротивление эквивалентного резистора равно сумме всех сопротивлений входящих в соединение, а ЭДС эквивалентного источника равна алгебраической сумме ЭДС источников входящих в соединение.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

R4=20 Ом, R5=40 Ом, R6=15 Ом (пример)

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Путем сворачивания цепи с помощью преобразований последовательно и параллельно соединенных проводников, можно максимально упростить для дальнейшего расчета сколь угодно сложную схему. Исключением служат цепи содержащие сопротивления, соединенные по схеме звезда и треугольник.

9. СОЕДИНЕНИЕ ЗВЕЗДОЙ И ТРЕУГОЛЬНИКОМ

Схему еоедииения трех ветвей, образующих замкнутый контур с тремя узлами называют треугольником.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

взаимные замены треугольника и звезды сопротивлений должны быть эквивалентными, т. е. при соответственно равных напряжениях между вершинами А, Б и В треугольника и звезды токи IA, IБ, 1В в подводящих проводах, соединяющих эти вершины с остальной частью цепи, должны остаться без изменений. Равенство токов должно выполняться при любых изменениях и переключениях в остальной части цепи и, в частности, при обрывах некоторых ее ветвей.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Рис 2.8 Соединение резисторов треугольником (а) и звездой (б)

Сопротивления эквивалентной звезды rа, rб, rв находятся в определенных соотношениях с сопротивлениями треугольника rаб, rбв, rва. Для выяснения этой зависимости допустим сначала, что в вершине А произошел обрыв подводящего провода и, следовательно, ток Iа=0. Сопротивления между двумя оставшимися присоединенными вершинами Б и В для обеих схем должны быть одинаковы, чтобы были соответственно равны токи IБ и Iв в обеих схемах.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

и вычтем из полученного выражения уменьшенные вдвое левую и правую части (2.14). В результате получим

сли сопротивления треугольника равны друг другу: rаб = rбв=rва=rΔ, то будут равны друг другу и сопротив

ления звезды, т. е. rа = rб=rв=r λ, причем из формул (2.17)—(2.19) получается простое соотношение

При обратном преобразовании звезды в эквивалентный треугольник, т. е. при заданных сопротивленияхrа, rб, rв, надо решить три уравнения (2.17)—(2 19) относительно сопротивлений rаб, rбв:

Таким образом, сопротивление стороны эквивалентного треугольника равно сумме сопротивлений двух лучей звезды, присоединенных к тем же вершинам, что и сторона треугольника, и их произведения, деленного на сопротивление третьего луча звезды.

11. Режимы работы электрической цепи

· Режим короткого замыкания ( КЗ )

В режиме короткого замыкания источник питания замкнут накоротко. Режим является аварийным. Ток короткого замыкания КЗ во много раз превышает значение номинального тока.

· Режим холостого хода ( ХХ )

В режиме холостого хода источник питания отсоединен от нагрузки и работает вхолостую. Сопротивление внешнего участка цепи и ток равен 0. Rн = ∞

· Режим согласованной нагрузки

Свойства электрической цепи – наибольшая мощность нагрузки развивается источником, когда сопротивление нагрузки ровно внутреннему сопротивлению источника.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Из графика видно с ростом сопротивления нагрузки растёт мощность на нагрузке при Rн = I0 мощность нагрузки наибольшая при дальнейшем росте Rн – PRн уменьшается.

Мощность электрического тока

Параллельное соединение резисторов. Калькулятор для расчета

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую резисторы соединяют последовательно или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения резисторов показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Пример №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом. Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Физические формулы и примеры вычислений

Формулы для эквивалентных сопротивлений цепи, состоящей из пары резисторов R1 и R2, можно выделить в определённый ряд:

У смешанного соединения резистивных элементов нет конкретной формулы. Чтобы не запутаться при длительных преобразованиях, здесь допустимо воспользоваться специальной программой из интернета. Это сервис «онлайн-калькулятор». Он поможет разобраться со сложными схемами соединения, будь то треугольник, квадрат, пятиугольник или иная схематичная фигура, образованная резистивными элементами.

Понять, как работают все формулы и методы, можно на конкретной задаче. На представленном первом рисунке – смешанная электрическая схема. Она включает в себя 10 резисторов. Элементы представлены в следующих номиналах:

Напряжение, поданное на схему:

Требуется рассчитать токи на всех резистивных элементах.

Для расчётов применяется закон Ома:

I = U/R, подставляя вместо R эквивалентное сопротивление.

Внимание! Для решения этой задачи сначала вычисляют общее (эквивалентное) R, после чего уже рассчитывают ток в цепи и напряжение на каждом резистивном компоненте.

Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения. Делают расчёты для каждого такого звена, после – всей цепи целиком.

На рисунке выше изображено смешанное соединение сопротивлений. Его можно разбить на три участка:

Сопротивления R2 и R3, образующие нижнюю ветку отрезка АВ, соединены последовательно, что учитывается при расчёте.

Если посмотреть на участок СD, то можно отметить смешанное включение резистивных элементов.

Начало расчётов состоит в определении эквивалентных сопротивлений для этих смешанных фрагментов. Выполняют это в следующем порядке:

Зная значения полученных эквивалентов, упрощают первоначальную схему. Она будет иметь вид, представленный на рисунке ниже.

Далее можно уже определить Rэкв. для участков AB, BC, CD, по формулам:

В результате выполненных вычислений получается эквивалентная схема, в которую входят три Rэкв. сопротивления. Она имеет вид, показанный на рисунке ниже.

Теперь можно определить эквивалентное сопротивление всей первоначальной схемы, сложив эквивалентные значения всех трёх участков:

Rэкв. = Rэкв.AB + Rэкв.BC + Rэкв.CD = 0,83 + 15 + 0,41 = 56,83 Ом.

Далее, используя закон Ома, находят ток в последнем последовательном участке:

I = U/ Rэкв. = 24/56,83 = 0,42 А.

Зная силу тока, можно найти, какое падение напряжения на рассмотренных участках AB, BC, CD. Это выполняется следующим образом:

Следующим шагом станет определение токов на параллельных отрезках AB и CD:

Далее, чтобы найти значения токов, проходящих через R7 и R8, нужно рассчитать напряжение на этих двух резисторах. Предварительно находят падение напряжения на R9.

U9 = R9*I6 = 8*0,02 = 0,16 В.

Теперь напряжение, падающее на Rэкв.7,8, будет разностью между U CD и U9.

U7,8 = UCD – U9= 0,17 – 0,16 = 1 В.

После этого можно уже узнать значение токов, движущихся по резисторам R7 и R8, используя формулы:

Стоит заметить! Ток, протекающий через R4 и R5, по своему значению равен току на отрезке, не имеющем разветвления.

Рассчитывая схемы и решая задачи по нахождению значений электрических параметров, необходимо использовать эквивалентные сопротивления. С помощью такой замены сложные построения превращаются в элементарные цепи, которые сводятся к параллельным и последовательным соединениям резистивных элементов.

Источник

Определить эквивалентное сопротивление цепи токи во всех резисторах

Что такое эквивалентное сопротивление резисторов

Точного понятия в физике не существует. Его можно вывести через ряд других терминов и формулировку закона Ома. В результате получится, что эквивалентное сопротивление резисторов — это суммарное препятствие взаимозаменяемых пассивных элементов электрической сети, чтобы заряд проходил в проводник.

К сведению! Один показатель дает на выходе значение сопротивляемости без воздействия на него ряда посторонних моментов.

Подробное объяснение эквивалентному сопротивлению

Как определить эквивалентное сопротивление

Если в электрической сети находится несколько резистивных источников, то, чтобы подсчитать силу тока, напряжения и мощность, следует использовать один взаимозаменяемый физический показатель сопротивления электрической цепи.

Любой показатель последовательного или параллельного подключения возможно преобразовать, используя эквивалентный резистор и один источник электродвижущей силы. Сопротивляемость в данном случае будет равна сумме всех препятствий пассивных устройств заряду электрической сети. Электродвижущая сила взаимозаменяемого источника будет равна сумме всех источников, которые входят в цепь.

Формула определения показателя

Обратите внимание! Сворачиванием цепи, используя преобразования последовательно подключенных или параллельных проводниковых приборов, можно по максимуму сделать проще дальнейший расчет в любой схеме. Исключением будут выступать цепи, которые содержат сопротивляемость по схеме в виде звезды и треугольника.

Виды пассивных элементов

Данные устройства характеризуются тем, что вместо рассеивания энергии склонны к ее накоплению. Разные типы таких деталей создают различные формы сопротивления.

Катушка индуктивности

Это радиокомпонент, представляющий собой проводниковый элемент спиральной или винтообразной формы, покрытый изоляцией. В схемах катушки используют для нивелирования помех и искажений, снижения величины переменного тока, генерации магнитного поля. Длинные тонкие элементы носят название соленоидов. Катушки отличаются небольшими величинами активной сопротивляемости и емкости, но обладают индуктивностью, генерируя электродвижущую силу.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление
Подключение катушки в электрическую цепь

Емкостной элемент

Примером этого вида деталей является конденсатор. Он включает в себя две проводящие обкладки, между которыми находится диэлектрический материал. Протекание электротока обусловлено накоплением и отдачей обкладками своего заряда.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление
Подсоединение конденсатора в электроцепь

Параллельное и последовательное соединение элементов

В разделе электротехники присутствует несколько вариантов того, как подключить детали в электрическую цепь. Есть параллельное и попеременное подсоединения. Их объединяет смешанная схема, которая представлена ниже.

Последовательное подключение — это когда все источники соединяются друг с другом последовательно. Получаемая цепь не обладает никакими разветвлениями. Сила тока в данном случае проходит через каждый источник. Она постоянная, общее напряжение одинаковое.

В случае препятствия резисторов заряду при последовательном подключении получится, что сопротивляемость будет равна сумме всех взаимозаменяемых пассивных элементов цепи. Рассчитывая параметры электротехнической схемы, не нужно применять частные параметры устройств. Их можно заменить одним значением, которое равно их суммарному показателю.

Обратите внимание! Польза взаимозаменяемости компонентов заключается в возможности замены нескольких пассивных элементов электрической сети одним.

Параллельное подключение — это такое подсоединение источников, в котором входы всех устройств находятся в одних местах, а выходы — в других. Этими местами служат узлы.

В случае эквивалентного препятствия заряду при параллельном соединении определить его можно благодаря закону Ома с преобразованием формулировки подсчета. Так, сделать необходимый расчет можно, основываясь на следующей формуле: R · R / N·R = R / N.

Если это соединение нескольких индуктивных катушек, то их индуктивный показатель сопротивляемости будет рассчитываться по той же формуле, что для резисторных устройств.

Важно! В случае с параллельным подключением общий показатель будет меньше любого показателя резистора. При последовательном подсоединении все наоборот.

Определение

Если посчитать общее сопротивление (Rобщ), можно выяснить изменение основных электрических параметров (тока (I) и напряжения (U)) при подключении схемы к определенному источнику питания. В простейшем варианте достаточно применить закон Ома (I = U/ R) и пренебречь внутренним сопротивлением аккумулятора.

При напряжении U = 6,5 В через подключенный резистор R = 20 ОМ будет проходить ток I = 6,5/20 = 0,325 А. По вычисленному параметру с помощью классической формулы можно узнать мощность:

P = I2 *R = U2/ R = 0,105625 * 20 = 2,11 Вт.

Полученное значение пригодится для выбора подходящего пассивного элемента в ассортименте магазина.

На практике приходится решать задачи с большим количеством элементов. Общий показатель эквивалентен суммарному сопротивлению цепи. Однако простым сложением правильный результат получить нельзя. Ниже рассмотрены технологии, по которым выполняют корректные вычисления.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Рисунок поясняет используемую терминологию:

Как правильно рассчитать при смешанном соединении устройств

Смешанным подключением устройств называется такой тип, при котором часть взаимозаменяемых компонентов подключается последовательно, а часть — параллельно. При смешанном подсоединении устройств определить эквивалентный показатель сопротивляемости несложно. Достаточно использовать следующую формулу: (R1 + R2) R3 / (R1 + R2 + R3) + R4.

Это соединение используется, чтобы изменить сопротивляемость в пусковых реостатах, питающихся от постоянного тока. Для подсчета используются специальные онлайн-сервисы. Это помогает быстрее вычислить, упростить и ускорить расчеты электротехнических параметров.

Формула расчета при смешанном соединении устройств

В результате, чтобы рассчитать эквивалентное сопротивление цепи, необходимо вспомнить про закон Ома и обязательно пользоваться указанными формулами выше. Только при смешенном типе соединения желательно вести подсчеты в онлайн-калькуляторах, так как есть риск допустить ошибку в расчетах.

Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Расчет электрических цепей постоянного тока методом эквивалентных преобразований

Основными законами, определяющими расчет электрической цепи, являются законы Кирхгофа.

На основе законов Кирхгофа разработан ряд практических методов расчета электрических цепей постоянного тока, позволяющих сократить вычисления при расчете сложных схем.

Существенно упростить вычисления, а в некоторых случаях и снизить трудоемкость расчета, возможно с помощью эквивалентных преобразований схемы.

Преобразуют параллельные и последовательные соединения элементов, соединение «звезда » в эквивалентный «треугольник » и наоборот. Осуществляют замену источника тока эквивалентным источником ЭДС. Методом эквивалентных преобразований теоретически можно рассчитать любую цепь, и при этом использовать простые вычислительные средства. Или же определить ток в какой-либо одной ветви, без расчета токов других участков цепи.

Эквивалентное сопротивление

Расчёт электрических схем, содержащих несколько сопротивлений (резисторов), при нахождении силы тока в цепи, напряжения или мощности, производится с использованием метода свёртывания. Метод заключается в том, чтобы найти эквивалентное сопротивление выделенных участков цепи. Основная задача – замена резисторов, имеющих различное подключение относительно друг друга, на эквивалент (Rэкв.).

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Определение эквивалентного сопротивления

При рассмотрении схем любых электрических или электронных устройств можно увидеть, что такие компоненты, как резисторы, имеют разные типы соединений между собой. Чтобы определить эквивалентное соединение, необходимо рассматривать два элемента, включенных в определённом порядке. Несмотря на то, что на чертеже их может быть несколько десятков, и соединены они по-разному, есть только два типа включения их друг с другом: последовательное и параллельное. Остальные конфигурации – это лишь их вариации.

Последовательное соединение элементов

Подобное включение подразумевает комбинацию деталей в прямой последовательности. Выход одного сопротивления подключается к входу другого. При этом отсутствуют какие-либо ответвления на участке. Величина тока, который проходит через все соединённые последовательно компоненты, будет одна и та же.

Внимание! Снижение потенциала на каждом резистивном элементе в сумме даст полное напряжение, приложенное к последовательной цепи.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

В случае постоянного тока формула закона Ома для отрезка цепи имеет вид:

Сила тока зависит от приложенного напряжения и оказанного ему сопротивления. Если выразить R, его формула:

Параметры последовательной цепи, включающей n соединённых друг с другом элементов, имеют свои особенности.

Проходящий по цепи ток везде одинаковый:

Прикладываемое напряжение является суммой напряжений на каждом резисторе:

Следовательно, рассчитать можно общее:

Rэкв.= U1/I + U2/I + … +Un/I) = R1 + R2 + … +Rn.

Важно! Последовательная цепь, имеющая в своём составе N резисторов равного номинала, имеет эквивалентное сопротивление Rэкв. = N*R.

Емкость в цепи переменного тока

При подаче на конденсатор постоянного напряжения он постепенно зарядится до максимальной разности потенциалов на его обкладках. После этого ток через электронный компонент прекратится и, не считая ничтожной утечки, будет равняться нулю. Поэтому в цепи постоянного тока конденсатор имеет огромное сопротивление. При расчетах его величину принимают равной бесконечности.

Реактивное сопротивление имеет вполне исчисляемое значение. Его можно измерить с помощью осциллографа, генератора и постоянного резистора. Для этого потребуется собрать схему. В ней конденсатор образует с резистором делитель напряжения. С помощью осциллографа будет измеряться потенциал, который образуется на выводах ёмкости.

Для данной схемы вычисления имеют следующий вид.

Формула косвенного измерения

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление
Косвенное измерение

Важно! Электрический кабель также обладает ёмкостью. Поэтому после снятия напряжения на нём остаётся некоторый заряд

Данное явление опасно для человека, особенно, если проводник до отключения находился под потенциалом 1000 В и выше.

Параллельное соединение

Когда условные выходы деталей имеют общий контакт в одной точке (узле) схемы, а условные входы так же объединены во второй, говорят о параллельном соединении. Узел на чертеже обозначается графической точкой. Это место, где происходят разветвления цепей в схемах. Такой вариант подключения резисторов обеспечивает одинаковое падение напряжения U для всех параллельных элементов. Ток в этой позиции будет равен сумме токов, идущих по каждому компоненту.

Когда в параллельное подключение входит n резистивных элементов, то разность потенциалов, ток и общее сопротивление будут иметь следующие выражения:

Величину, обратно пропорциональную сопротивлению 1/R, называют проводимостью.

Если n равных по номиналу сопротивлений включить параллельно, то Rэкв. = (R*R)/n*R = R/n. Формула подходит и для индуктивных сопротивлений проволочных катушек и ёмкостных сопротивлений конденсаторов.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Постулаты Кирхгофа

Эти принципы используют для расчета сложных электрических схем. Базовые сведения о токах и напряжениях помогут уточнить контрольные параметры в отдельных узлах. С помощью этой информации корректируют характеристики отдельных функциональных компонентов. Они пригодятся для определения уровня выходного сигнала в определенных точках без применения измерительной аппаратуры.

Первый постулат

По классической формулировке сумма (алгебраическая) входящих и выходящих из одного узла токов определяется выражением:

Это соотношение справедливо для любой контрольной точки схемы, где соединяются ветви. Не имеет значения, какие именно компоненты включены в отдельные цепи:

Второй постулат

Это правило определяет равенство сумм напряжений и ЭДС, включенных в один контур. Для наглядности можно представить простейший пример с двумя резисторами, подключенными к источнику постоянного тока. С помощью мультиметра измеряют напряжения на выводах:

Второе правило действительно для всех замкнутых контуров, смешанных и сложных соединений. Для проверки вычислений можно суммировать последовательно разницу потенциалов контрольных точек. Если в цепи отсутствуют дополнительные генераторы (аккумуляторные батареи), получится результат, равный нулю. Выбирают направление обхода контура, соответствующее положительному току (входящему в узел). Выше показан частный случай, когда складывают результаты измерений.

К сведению. Второй постулат Кирхгофа применяют для расчета схем, подключенных к источнику питания переменного тока.

Расчёт при смешанном соединении устройств

Произвести расчет сопротивления цепи, когда она разветвлена и наполнена разными видами резистивных соединений, просто не получится. Затрудняет решение задачи множество участков, где детали подключены друг другу в разных комбинациях. В таких обстоятельствах желательно выполнять ряд преобразований, добиваясь упрощения схемы вводом отдельных эквивалентных элементов. Выявляют при этом подходящие контуры последовательных и параллельных присоединений.

Например, выискав некоторое количество последовательных подключений резисторов, заменяют их на один эквивалентный компонент. Определив элементы, соединённые последовательно, также рисуют вместо него эквивалент. Вновь начинают искать подобные простые соединения.

Метод называют «методом свёртывания». Схему упрощают до тех пор, пока в ней не останется одно Rэкв.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Важно! Метод эквивалентных преобразований применяется тогда, когда питание рассматриваемого участка цепи осуществляется от одного источника электрического тока, а также при определении Rэкв. в замкнутом контуре с одной ЭДС.

Такой относительный способ определения Rэкв используют и для изучения зависимости токов в некоторой цепи от значения R нагрузки. Это метод эквивалентного генератора, при котором сложный двухполюсник, являющийся активным, представляют эквивалентным генератором. При этом считают, что ЭДС его соответствует Uх.х. (холостого хода) на зажимах, R внутреннее соответствует R входному двухполюсника пассивного на тех же зажимах. Для такого определения источники тока разъединяют, а канал ЭДС закорачивают.

Практическое применение

Чаще всего на практике расчёт общего сопротивления цепи выполняют для того, чтобы узнать потребляемую мощность той или иной схемы. При этом, зная общее сопротивление, можно найти и такие важные параметры цепи, как ток и напряжение. Поэтому и рисуют эквивалентную схему электрической цепи. Простые цепи состоят только из последовательных или параллельных участков, но чаще встречаются комбинированные соединения.
Перед тем как приступить к расчёту эквивалентного сопротивления, вся электрическая цепь разделяется на простые контуры. Как только импеданс каждого такого контура будет подсчитан, схема перерисовывается, но вместо контуров рисуется уже резистор. Затем всё повторяется, и это происходит до тех пор, пока не останется один элемент.

Простое соединение

Пусть будет дана схема, состоящая из трёх резисторов, включённых последовательно. При этом сопротивление R1и R2 одинаковое и равно 57 Ом, а сопротивление R3 составляет один килоОм. Для расчёта общего сопротивления цепи сначала понадобится привести значение R3 согласно Международной системе единиц.
R3 = 1 кОм = 1000 Ом.

Так как соединение последовательное, используется формула: Ro = R1+R2+R3. Подставив известные значения, рассчитывается эквивалентное значение: Ro = 57+57+1000 = 1114 Ом.

Если же те же самые резисторы будут расположены параллельно друг другу, то для расчёта общего сопротивления уже используется другое выражение:

Ro = R1*R2*R3 / (R1*R2+R2*R3+R1*R3).

Подставив исходные данные в эту формулу, получим:

Ro = 57*57*1000/ (57*57 +57*1000+ 57*1000) = 3249000/117249 = 27,7 Ом.

Комбинированный контур

Необходимо вычислить мощность и эквивалентное сопротивление смешанной цепи, состоящей из четырёх резисторов. Резистор R1 =R2 =5 Ом, R3= 10 Ом, R4 =3 Ом. На схему подаётся питание пять вольт.
Первоначально понадобится упростить схему. Сопротивления R3 и R4 включены относительно друг друга параллельно. Поэтому находится их объединённое сопротивление:

Rp = (10*3)/ (10+3) = 2,3 Ом.

Теперь схему можно перерисовать в виде трёх последовательно включённых резисторов и найти общее сопротивление путём сложения их величин:

Ro = R1+R2+Rp = 5+5+2,3 = 12,3 Ом.

Зная эквивалентное сопротивление, используя закон Ома, несложно вычислить силу тока в цепи и мощность эквивалентного резистора:

Таким образом, путём постепенного упрощения схемы можно свести цепь из последовательно и параллельно соединённых резисторов к одному элементу. А затем рассчитать его сопротивление и требуемую мощность.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Физические формулы и примеры вычислений

Формулы для эквивалентных сопротивлений цепи, состоящей из пары резисторов R1 и R2, можно выделить в определённый ряд:

У смешанного соединения резистивных элементов нет конкретной формулы. Чтобы не запутаться при длительных преобразованиях, здесь допустимо воспользоваться специальной программой из интернета. Это сервис «онлайн-калькулятор». Он поможет разобраться со сложными схемами соединения, будь то треугольник, квадрат, пятиугольник или иная схематичная фигура, образованная резистивными элементами.

Понять, как работают все формулы и методы, можно на конкретной задаче. На представленном первом рисунке – смешанная электрическая схема. Она включает в себя 10 резисторов. Элементы представлены в следующих номиналах:

Напряжение, поданное на схему:

Требуется рассчитать токи на всех резистивных элементах.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Для расчётов применяется закон Ома:

I = U/R, подставляя вместо R эквивалентное сопротивление.

Внимание! Для решения этой задачи сначала вычисляют общее (эквивалентное) R, после чего уже рассчитывают ток в цепи и напряжение на каждом резистивном компоненте.

Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление Все резисторы имеют одинаковое сопротивление чему равно эквивалентное сопротивление

Практическое применение

Чаще всего на практике расчёт общего сопротивления цепи выполняют для того, чтобы узнать потребляемую мощность той или иной схемы. При этом, зная общее сопротивление, можно найти и такие важные параметры цепи, как ток и напряжение. Поэтому и рисуют эквивалентную схему электрической цепи. Простые цепи состоят только из последовательных или параллельных участков, но чаще встречаются комбинированные соединения.

Перед тем как приступить к расчёту эквивалентного сопротивления, вся электрическая цепь разделяется на простые контуры. Как только импеданс каждого такого контура будет подсчитан, схема перерисовывается, но вместо контуров рисуется уже резистор. Затем всё повторяется, и это происходит до тех пор, пока не останется один элемент.

Простое соединение

Пусть будет дана схема, состоящая из трёх резисторов, включённых последовательно. При этом сопротивление R1и R2 одинаковое и равно 57 Ом, а сопротивление R3 составляет один килоОм. Для расчёта общего сопротивления цепи сначала понадобится привести значение R3 согласно Международной системе единиц.

Советуем изучить Цветовая маркировка резисторов

R3 = 1 кОм = 1000 Ом.

Так как соединение последовательное, используется формула: Ro = R1+R2+R3. Подставив известные значения, рассчитывается эквивалентное значение: Ro = 57+57+1000 = 1114 Ом.

Если же те же самые резисторы будут расположены параллельно друг другу, то для расчёта общего сопротивления уже используется другое выражение:

Ro = R1*R2*R3 / (R1*R2+R2*R3+R1*R3).

Подставив исходные данные в эту формулу, получим:

Ro = 57*57*1000/ (57*57 +57*1000+ 57*1000) = 3249000/117249 = 27,7 Ом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *