Гкс что это в нефтянке

Газовый конденсат

Газовый конденсат (ГК) – это смесь углеводородов, которые выделяются из природных газов в процессе их добычи, т. е. побочный продукт разработки газовых и нефтяных месторождений.

Фракционный (химический) состав газового конденсата (ГК)

Газовым конденсатом называют бесцветную или слабоокрашенную жидкость от соломенно-желтого до желто-коричневого цвета. Оттенок зависит от количества примесей нефти. Чем глубже добывается конденсат, тем более насыщенным бывает его цвет. Иначе газоконденсат еще называют «белой нефтью».

В составе содержатся следующие фракции:

Если газ залегает на большой глубине, то конденсате преобладают керосин и газойль. Наибольшее распространение имеет газоконденсат, включающий нафтены и метаны.

Способы получения газового конденсата (ГК)

Газовый конденсат добывают на газоконденсатных месторождениях (ГКМ) в процессе выработки влажного природного газа. Дополнительно нефтепродукт получают из попутного нефтяного газа, образуемого при добыче нефти, а в небольшом количестве – из сухого природного газа и на установках комплексной подготовки газа (УКПГ).

В природе газоконденсат залегает в газообразном состоянии. Конденсат образуется, поскольку в процессе работ по получению газа или нефти создаются особые условия. Бензиново-керосиновые фракции, залегающие в пластах, подвергаются действию высокого давления и температуры. Оба показателя падают, когда газодобывающая компания бурит толщу земли, пытаясь добраться до газосодержащих пластов. К примеру, давление снижается с 10-60 до 4-8 Мпа. Падение показателей – это условия для образования конденсата.

В месторождениях с большим количеством газового конденсата некоторые фракции (C1-C2) закачивают обратно, чтобы не дать давлению упасть до атмосферного и сохранить на нужном уровне в целях добычи газоконденсата. Поверхности достигают только углеводороды C3 и выше. В зависимости от качества природного газа концентрация газоконденсата может составлять 5-1000 г/м3. Показатели тем больше, чем выше изначальное давление в толще залежей.

Виды газового конденсата

Нестабильный газовый конденсат подвергают дополнительной подготовке. Продукт очищают от примесей и легких углеводородов (метана, пропана и бутана), а также подвергают сепарации газа (дегазации). В результате он становится стабильным – в нем содержится не более 2-3% пропан-бутановой, бензиново-керосиновой и газойлевой фракций.

Стабильный газоконденсат делится на 2 вида:

Для стабильного газового конденсата (КГС) установлены следующие технические характеристики:

Плотность нефтепродукта не установлена ГОСТом. В среднем показатель составляет 700-840 кг/м3 при температуре 20 °C.

Способы (область) применения

Газовый конденсат активно используют в нефтехимической, топливной, промышленной и коммунальной отраслях. «Белая нефть» служит сырьем для производства бензина, керосина, дизельного, ракетного и котельного топлива.

Ввиду низкой детонационной стойкости в газоконденсат при изготовлении бензина добавляют присадки-антидетонаторы. Без дополнительной обработки сырье можно использовать только для производства летнего топлива. Для изготовления зимних марок требуется предварительная депарафинизация (удаление парафинов). Без этого топливо из газового конденсата в зимнее время быстро мутнеет и застывает.

Из олефинов, ароматических углеводородов и других низкомолекулярных веществ, которые образуются при нефтехимической переработке газоконденсата, изготавливают синтетический каучук, смолы, пластмассы, лакокрасочную продукцию.

Особенности транспортировки и хранения

Газовый конденсат хранят на нефтебазах и нефтехранилищах, которые представляют собой комплекс подземных и наземных металлических резервуаров. Для приема и отпуска сырья к ним примыкает ж/д платформа или конденсатопровод. Нестабильный газоконденсат хранится в горизонтальных резервуарах (булитах), работающих под давлением, а стабильный – в вертикальных.

Доставку потребителю осуществляют с помощью ж/д цистерн, бензовозов, речных и морских судов с соблюдением требований безопасности. Ж/д доставка целесообразна и экономически обоснована при перевозке больших объемов сырья на дальние расстояния. В остальных случаях более выгодна транспортировка специализированным автотранспортом.

Регламентирующие документы (ГОСТы, ТУ)

Технические условия и требования к газовому конденсату содержатся в ГОСТ Р 54389-2011.

Источник

Гкс что это в нефтянке

Государственный Комитет по физкультуре и спорту

главный корабельный старшина

государственная компьютерная сеть

газовый конденсат стабильный

Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.

гидроакустическое контрольное судно

группа космической связи

глобальная компьютерная сеть

Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.

Государственный комитет по связи Российской Федерации

организация, РФ, связь

Государственный комитет по статистике

Словарь: С. Фадеев. Словарь сокращений современного русского языка. — С.-Пб.: Политехника, 1997. — 527 с.

городские коммунальные системы

в разных городах РФ

Группа компаний Систематика;
Группа Систематика

филиал «Балтийской газовой компании»

Источник: http://moscow.holesale.ru/view/170/8781643; http://baltgaz.ru/

Газпром космические системы

ОАО
раньше: ОАО «Газком»

косм., Московская обл., организация, РФ, связь

Государственный комитет по судостроению

городская компьютерная сеть

головная компрессорная станция

ГКС ОАО «Саянскхимпласт» (Иркутская обл.)

Полезное

Смотреть что такое «ГКС» в других словарях:

ГКС — может означать: Глюкокортикостероиды Глобальная компьютерная сеть Газокомпрессорная станция Гибридные компьютерные системы См. также Белхатув, футбольный клуб (польск. GKS Bełchatów) … Википедия

ГКС РБ — Государственный комитет Республики Башкортостан по управлению государственной собственностью; Госкомсобственность РБ Башкирия … Словарь сокращений и аббревиатур

ГКС — газокаротажная станция Госкомсвязи (РФ) Государственный комитет по статистике … Словарь сокращений русского языка

ГКС Тыхы (хоккейный клуб) — ХК ГКС Тыхы Страна … Википедия

ГКС Катовице (хоккейный клуб) — ХК ГКС Катовице Страна … Википедия

Стадион ГКС Белхатув — Стадион ГКС … Википедия

ГМЦ ГКС РФ — Главный межрегиональный центр Госкомстата Российской Федерации организация, РФ … Словарь сокращений и аббревиатур

главкорстар — ГКС главкорстар главный корабельный старшина морск … Словарь сокращений и аббревиатур

госкомстат — ГКС госкомстат Государственный комитет по статистике госкомстат Словарь: С. Фадеев. Словарь сокращений современного русского языка. С. Пб.: Политехника, 1997. 527 с … Словарь сокращений и аббревиатур

Польская хоккейная лига — Текущий сезон: 2012 13 Вид спорта хоккей с шайбой Основана 1927 Количество команд … Википедия

Источник

Гкс что это в нефтянке

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОНДЕНСАТ ГАЗОВЫЙ СТАБИЛЬНЫЙ

Stable gas condensate. Specifications

Дата введения 2012-07-01

Предисловие

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 52 «Природный и сжиженные газы»

5 ПЕРЕИЗДАНИЕ. Октябрь 2019 г.

1 Область применения

Настоящий стандарт распространяется на конденсат газовый стабильный, подготовленный на установках первичной переработки к транспортированию и/или к применению в качестве сырья для дальнейшей переработки на территории Российской Федерации и на экспорт.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.0.004 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения

ГОСТ 12.1.004 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.005 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.019 Система стандартов безопасности труда. Электробезопасность. Общие требования и номенклатура видов защиты

ГОСТ 12.1.044 (ИСО 4589-84) Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения

ГОСТ 12.4.010 Система стандартов безопасности труда. Средства индивидуальной защиты. Рукавицы специальные. Технические условия

ГОСТ 12.4.011 Система стандартов безопасности труда. Средства защиты работающих. Общие требования и классификация

ГОСТ 12.4.020 Система стандартов безопасности труда. Средства индивидуальной защиты рук. Номенклатура показателей качества

ГОСТ 12.4.021 Система стандартов безопасности труда. Системы вентиляционные. Общие требования

ГОСТ 12.4.103 Система стандартов безопасности труда. Одежда специальная защитная, средства индивидуальной защиты ног и рук. Классификация

ГОСТ 17.1.3.05 Охрана природы. Гидросфера. Общие требования к охране поверхностных и подземных вод от загрязнения нефтью и нефтепродуктами

ГОСТ 17.1.3.10 Охрана природы. Гидросфера. Общие требования к охране поверхностных и подземных вод от загрязнения нефтью и нефтепродуктами при транспортировании по трубопроводу

ГОСТ 17.1.3.12 Охрана природы. Гидросфера. Общие правила охраны вод от загрязнения при бурении и добыче нефти и газа на суше

ГОСТ 17.1.3.13 Охрана природы. Гидросфера. Общие требования к охране поверхностных вод от загрязнения

ГОСТ 17.4.2.01 Охрана природы. Почвы. Номенклатура показателей санитарного состояния

ГОСТ 17.4.3.04 Охрана природы. Почвы. Общие требования к контролю и охране от загрязнения

ГОСТ 1510 Нефть и нефтепродукты. Маркировка, упаковка, транспортирование и хранение

ГОСТ 1756 (ИСО 3007-99) Нефтепродукты. Определение давления насыщенных паров

ГОСТ 2177-99 (ИСО 3405-88) Нефтепродукты. Методы определения фракционного состава

ГОСТ 2477 Нефть и нефтепродукты. Метод определения содержания воды

ГОСТ 2517 Нефть и нефтепродукты. Методы отбора проб

ГОСТ 3900 Нефть и нефтепродукты. Методы определения плотности

ГОСТ 6370 Нефть, нефтепродукты и присадки. Метод определения механических примесей

ГОСТ 11851 Нефть. Методы определения парафинов

ГОСТ 19121 Нефтепродукты. Метод определения содержания серы сжиганием в лампе

ГОСТ 19433 Грузы опасные. Классификация и маркировка

ГОСТ 21534 Нефть. Методы определения содержания хлористых солей

ГОСТ 31340 Предупредительная маркировка химической продукции. Общие требования

ГОСТ 31873 Нефть и нефтепродукты. Методы ручного отбора проб

ГОСТ 33701 Определение и применение показателей точности методов испытаний нефтепродуктов

ГОСТ Р 12.4.290 Система стандартов безопасности труда. Автономные изолирующие средства индивидуальной защиты органов дыхания. Метод определения величины сопротивления дыханию

ГОСТ Р 12.4.301 Система стандартов безопасности труда. Средства индивидуальной защиты дерматологические. Классификация и общие требования

ГОСТ Р ИСО 3675 Нефть сырая и нефтепродукты жидкие. Лабораторный метод определения плотности с использованием ареометра

ГОСТ Р ИСО 14001 Системы экологического менеджмента. Требования и руководство по применению

ГОСТ Р 50802 Нефть. Метод определения сероводорода, метил- и этилмеркаптанов

ГОСТ Р 51069 Нефть и нефтепродукты. Метод определения плотности, относительной плотности и плотности в градусах API ареометром

ГОСТ Р 51858 Нефть. Общие технические условия

ГОСТ Р 51947 Нефть и нефтепродукты. Определение серы методом энергодисперсионной рентгенофлуоресцентной спектрометрии

ГОСТ Р 52247 Нефть. Методы определения хлорорганических соединений

ГОСТ Р 52340 Нефть. Определение давления паров методом расширения

ГОСТ Р 53521 Переработка природного газа. Термины и определения

ГОСТ Р 58577 Правила установления нормативов допустимых выбросов загрязняющих веществ проектируемыми и действующими хозяйствующими субъектами и методы определения этих нормативов

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ Р 53521, а также следующие термины с соответствующими определениями:

первичная переработка природного газа [газового конденсата]: Переработка природного газа [газового конденсата] путем физических и физико-химических методов воздействия, направленная на удаление из него примесей и придания ему качества, необходимого для последующего безопасного хранения, транспортирования и использования, и выделение компонентов и фракций.

4 Технические требования

4.1 КГС должен соответствовать требованиям таблицы 1.

4.2 По содержанию хлористых солей, сернистых соединений КГС подразделяют на группы 1 и 2 в соответствии с таблицей 1.

Источник

Нефтянка для инженеров, программистов, математиков и широких масс трудящихся, часть 2

Гкс что это в нефтянке

Сегодня мы расскажем о том, как буровые станки бороздят просторы Сибири, из чего состоит скважина; зачем, для того, чтобы добыть что-нибудь нужное, надо сначала закачать в пласт что-нибудь ненужное; и из чего, собственно, сделана нефтяная залежь. Это вторая часть из серии статей для будущих математиков-программистов, которым предстоит решать задачи, связанные с моделированием нефтедобычи и разработкой инженерного ПО в области сопровождения нефтедобычи.

Первую часть серии можно прочесть здесь

Конструкция скважины

Скважина – это отверстие в земле, в земной коре (в почве, потом в глине, потом во всяких разных породах – все видели слоистость земли на стенке любого строительного котлована), пробуренное до глубины залегания месторождения с целью выкачивания из месторождения чего-нибудь нужного (нефти или газа) или закачивания в месторождение чего-нибудь ненужного (воды или углекислого газа). Места, где нефть можно просто черпать с поверхности земли или поднимать воротом из неглубоких колодцев, почти закончились: теперь до нефти нужно сначала добуриться.

Гкс что это в нефтянке

Скважину бурят буровой установкой, которая насаживает на трубу специальное буровое долото с вращающимися резцами. В зависимости от способа, может вращаться сама труба вместе с резцами, или труба может не вращаться, но в буровой инструмент подаётся по той же трубе (бурильной колонне) электричество или буровой раствор под давлением. В последнем случае буровой раствор и приводит в движение долото, и он же обратным потоком жидкости выносит на поверхность всё, что там резец набурит. Не знаю, как вы, а я был в своё время восхищён такой инженерной идеей. Там ещё и телеметрия передаётся обратно звуковыми волнами тоже по потоку жидкости.

Гкс что это в нефтянке

В процессе бурения можно увеличивать или уменьшать вертикальную нагрузку на долото (то есть, давить вниз) для изменения скорости проходки, а также потихоньку отклонять буровую колонну для того, чтобы направлять скважину в ту или иную сторону. По понятным причинам для бурения нескольких скважин удобнее всего начинать бурение в одном и том же месте, называемом кустом скважин: удобно подвозить к одному месту руду, дерево, ртуть, серу, кристаллы, золото материалы, бригады, оборудование, подводить электричество, а после запуска всех скважин в работу – собирать нефть. Делать это с десятка скважин на одном кусту очевидно удобнее, чем с десятка скважин, рассредоточенных на необъятных просторах торфяных болот Сибири. Поэтому начинают бурить все скважины куста с одной площадки, и постепенно разводят их по траекториям в разные стороны, чтобы на поверхности все траектории скважин куста сходились в одном месте, но внизу равномерно распределялись по какому-то заданному участку месторождения. Это означает, что чаще всего у набора скважин с одного куста есть несколько типовых участков траектории: начальный участок продолжается участком, где скважины разводятся по разным азимутам. Если кто забыл, азимут – это направление, на которое стрелка компаса указывает, точнее – отклонение от этой стрелки. Потом идёт участок набора глубины, потом участок хитрого входа в нефтесодержащий пласт, ну и собственно, участок скважины внутри нефтесодержащего пласта, где в скважину через её стенки поступает нефть.

Чаще всего месторождение “в длину” и “в ширину”, то есть по латерали, гораздо больше, чем “в высоту”, то есть по вертикали. По латерали месторождение может простираться на километры, десятки и сотни километров, а по вертикали – на метры, десятки и сотни метров. Также очевидно, что чем более длинная часть скважины находится внутри месторождения, тем больше нефти будет к такой скважине притекать. Поэтому сейчас большая часть буримых скважин – горизонтальные. Это не значит, что вся скважина горизонтальная – нет, наверху всё такой же “паук” с лапками вниз и в разные стороны. Условно вертикальная скважина “протыкает” месторождение вертикально, а условно горизонтальная скважина имеет довольно длинный (сотни метров) вскрывающий месторождение горизонтальный участок.

Гкс что это в нефтянке

Гкс что это в нефтянке

После бурения скважину отдают в освоение. Дело в том, что при бурении скважина и прилегающая к ней часть пласта оказывается забита всяким мусором и шламом: мелкими и крупными частицами породы, утяжелителями бурового раствора и так далее. Задача освоения – очистить скважину, очистить место соединения скважины с пластом, очистить прилегающую часть пласта (призабойную зону) так, чтобы то, что мы хотим добывать или закачивать, не испытывало затруднений на своём пути. После освоения скважина готова к добыче: спускай длинную насосно-компрессорную трубу (НКТ), на которой находится насос, открывай задвижку на самой скважине, включай насос и готовь ёмкости или трубопровод.

Гидравлический разрыв пласта (ГРП)

Правда, даже если вы сделаете всё в точности как описано выше, ёмкость вам понадобится маленькая, а трубопровод тоненький. Всё потому, что большинство месторождений, находящихся в разработке сейчас, являются настолько плохими (низкопроницаемыми), что бурение обычных вертикальных или даже горизонтальных скважин становится экономически неэффективным. Причём хорошо, если просто экономически неэффективным – в конце концов, всегда можно напечатать долларов и раздать бедным сланцевым компаниям – а вот если энергетически неэффективным (когда в добываемой нефти энергии меньше, чем требуется потратить на бурение и добычу), то совсем пиши пропало. На помощь пришла технология гидравлического разрыва пласта.

Суть гидроразрыва пласта (ГРП) заключается в следующем. В скважину под большим давлением (до 650 атм. или даже 1000 атм.) закачивают специальную жидкость, похожую на желе (собственно, это и есть желе). Это давление разрывает пласт, раздвигая слои породы. Но на той глубине, где обычно производится ГРП, порода сильнее сдавлена сверху, чем с боков, поэтому давлению проще раздвинуть её в стороны, чем вверх. Трещина получается почти плоская и вертикальная, при этом ширина её составляет считанные миллиметры, высота – десятки метров, а длина может доходить до нескольких сотен метров. Затем вместе с жидкостью начинает подаваться пропант – похожая на песок смесь крепких керамических гранул диаметром от долей миллиметров до миллиметров. Цель ГРП – закачать побольше пропанта в пласт так, чтобы образовалась очень хорошо проницаемая область, соединённая со скважиной. Жидкость, конечно, утечёт в пласт, а пропант останется там, куда успел дойти и не даст трещине полностью сомкнуться, обеспечивая высокопроводящий канал. Если до ГРП нефть в скважину притекала только со стенки самой скважины, то после ГРП нефть притекает со всей (ну может и не со всей, а может только с половины, точно никто не скажет) поверхности трещины. То есть площадь с которой притекает нефть, после ГРП увеличивается где-то в 1000 раз. А значит растёт (пусть и не в 1000 раз) и дебит скважины, что в конечном итоге позволяет разрабатывать месторождения, которые ранее считались нерентабельными.

Гкс что это в нефтянке

Современные технологии дошли до того, что позволяют сделать на скважине не одну трещину ГРП, а целый набор, называемый стадиями (чемпионские скважины сейчас имеют длину горизонтального участка до 2000 м. и до 30-40 трещин ГРП).

Физико-химические свойства нефтесодержащей породы

Гкс что это в нефтянке

Важно понимать, что и пористость, и все остальные описываемые далее параметры, не являются на самом деле одним числом, которое справедливо для всего месторождения. Это показатели, которые зависят от самой породы и пропитывающих её флюидов, и, конечно же, меняются от точки к точке, потому что само месторождение практически всегда неоднородно (пусть и масштаб этой неоднородности может быть очень разным). Там, где в пределах месторождения залегают глины, пористость будет мала, где залегают песчаники – там пористость будет велика, и так далее. Кстати, мы всё равно не сможем описать каждый кубический сантиметр породы, поэтому от реальности при моделировании нам придётся отступить, и считать, что на каком-то масштабе (например, в ячейках размером 10 метров на 10 метров на 1 метр) свойства породы и всего остального не меняются.

Второй важный показатель – проницаемость породы. Она показывает способность породы пропускать сквозь себя флюид. Флюид, кстати, – это то, что может течь, жидкость или газ. Когда пустот в породе мало, порода не пропускает сквозь себя флюид. Мысленно представим, что пустот в породе становится всё больше и больше: начиная с определённого момента отдельные пустоты начинают соединяться друг с другом и происходит перколяция – возникают каналы, по которым флюид может начинать двигаться. В быту мы часто сталкиваемся с пористыми материалами с высокой и низкой проницаемостью: губку для посуды легко “продуть” насквозь, хлеб уже больше сопротивляется попыткам продуть сквозь него воздух, а продуть насквозь пробку не легче, чем надуть резиновую грелку. Измеряется она в единицах дарси, но чаще в ходу миллидарси мД и нанодарси нД.

Во всех этих случаях можно заметить следующие закономерности. Через одни материалы (с высокой проницаемостью) всё фильтруется легче, чем через другие – и жидкости, и газы. Кроме этого, газы вообще фильтруются легче, чем жидкости. Да и среди жидкостей всё не так однозначно – любой может заметить в домашних условиях, что жидкий гелий (у любой рачительной хозяйки в холодильнике всегда есть) фильтруется гораздо легче, чем вода… а вода фильтруется гораздо легче, чем, например, кисель. Это происходит потому, что на скорость фильтрации влияет не только проницаемость (через что фильтруется), но и вязкость (что фильтруется).

Гкс что это в нефтянке

Нефтяники всё время говорят про фильтрацию, используя именно это слово, но нужно привыкнуть к его особенному значению. Кофе фильтруется через бумажную салфетку, оставляя на ней частицы зёрен, но нефть, газ и флюиды фильтруются через породу немного в другом смысле. Слово “фильтруется” в нефтянке надо понимать просто как “течёт сквозь”.

Во всех приведённых примерах чтобы что-то начинало продуваться, мы начинали дуть, то есть прикладывать разность давлений. Если взять сантехническую трубу, набить её пористой средой и приложить к одному концу трубы повышенное давление газа или жидкости (с другой стороны будет обычное, атмосферное), то закон Дарси утверждает, что скорость фильтрации (дебит, то есть расход продуваемого флюида в секунду) будет пропорциональна проницаемости и перепаду давления и обратно пропорциональна вязкости и длине трубы. Если в два раза увеличить длину трубы, для сохранения такой же скорости потока нужно в два раза увеличить перепад давления, а если в два раза увеличить вязкость продуваемого газа или жидкости, то для сохранения скорости продува нужно в два раза увеличить проницаемость продуваемой среды.

Как связана пористость и проницаемость?

Во-первых, для реальных материалов, в том числе для горных нефтенасыщенных пород, они действительно друг с другом чаще всего коррелируют. Во-вторых, правильнее говорить, что пористость является причиной для проницаемости. Очевидно, что если пористость равна нулю, то и проницаемость тоже равна нулю. Но вот все остальные зависимости – скорее статистические. Да, действительно, чаще всего, чем больше пористость, тем больше и проницаемость, и вообще, чаще всего пористость и проницаемость связаны экспоненциальной статистической зависимостью (обратите внимание, что на картинке одна ось – логарифмическая). Однако техногенные вещества могут эту зависимость нарушать: так аэрогель имеет высокую пористость (90-99%), но очень низкую проницаемость (я думаю, меньше 1 нД).

Гкс что это в нефтянке

На что влияет проницаемость? На скорость добычи, конечно. Насос, спущенный в скважину очень быстро “выбирает” нефть вокруг себя и снижает давление в призабойной (прилегающей к нижней части скважины) зоне, а дальше в игру вступает проницаемость. Если она достаточно высока, то перепад давления, созданный насосом, вызывает фильтрацию пластовой жидкости из дальней зоны, а если проницаемость мала, то сколько ни снижай насосом давление в призабойной зоне (а у давления нет верхнего предела, но очень даже есть нижний – создать давление ниже нуля атмосфер ещё никому не удавалось!), существенный приток не вызовешь. Гипотетически, если выкопать скважину глубиной два километра в породе с нулевой проницаемостью (говорю же – гипотетически), то скважину можно полностью осушить, и на дне её будет то же самое атмосферное давление (ну ладно, чуть больше), но ничего никуда течь не будет.

В итоге, в так (неправильно) называемых “сланцевых” месторождениях нетрадиционной нефти с их крайне низкой проницаемостью бурить обычные скважины бесполезно: нефть есть, её много, но из-за низкой проницаемости скорость фильтрации такая низкая, что скважины дают мизер, не окупающий даже их эксплуатацию. Что делать? Увеличивать площадь скважины, но не увеличивая её диаметр (обрушится!), а создавая в пласте соединённую со скважиной открытую трещину ГРП, пусть и тонкую, но с большой площадью стенок. И даже это позволяет добывать нефть только с того объёма, который хоть как-то трещинами был затронут, а с соседнего кубокилометра так ничего и не притечёт.

Итак, пористость определяет теоретический доступный к добыче объём месторождения, а проницаемость определяет скорость фильтрации нефти к скважине. Третий важный параметр, описывающий свойства нефтесодержащей породы – это насыщенность, в частности, нефтенасыщенность. Пористость описывает объем “пустоты” в породе, которую может занимать любой подвижный агент – хоть жидкость, хоть газ. Но таких кандидатов в месторождении несколько: это может быть действительно газ, в условиях месторождения это чаще всего природные газообразные углеводороды (метан, этан, пропан и так далее), или какой-нибудь техногенный углекислый газ, если его уже успели закачать. И это может быть, собственно, нефть и вода. Откуда там возьмётся вода? Правильный вопрос на самом деле – откуда там взялась нефть, потому что вода там была с самого начала: напоминаю, когда-то всё это было дном океана. Это нефть в ловушку месторождения пришла и вытеснила воду, но вытеснила не всю воду, что там изначально была. В итоге когда мы начинаем разрабатывать месторождение, часть порового объёма в любой точке может быть занята нефтью, часть газом, а часть водой.

Гкс что это в нефтянке

Доля порового объёма, занимаемая нефтью – это и есть нефтенасыщенность. Особенность этого показателя в том, что он может меняться в процессе разработки месторождения. Когда через нагнетательные скважины начинают закачивать воду, нефтенасыщенность в разных точках месторождения начинает меняться.

Кроме нефтенасыщенности есть ещё и газонасыщенность – доля свободного газа в поровом объёме (какое-то количество газа, кроме этого, ещё и растворено в нефти – оно учитывается в другом месте). В каких-то месторождениях есть свободный газ (он скапливается в верхней части месторождения в виде так называемой газовой шапки), в каких-то нет. Какая-то часть порового объёма, кроме этого, обязательно занята водой – доля этого объёма называется водонасыщенностью. В любом случае, сумма нефте-, газо- и водонасыщенности всегда равна единице, потому что – а чем ещё может быть занят поровый объём между крупинками породы?

Следующим важным физическим параметром, влияющим на добычу нефти, является так называемое пластовое давление – давление флюида между частичками породы в каждой точке месторождения. Сами частички ещё испытывают на себе геостатическое давление “скелета” всей породы, что ещё лежит сверху, но это уже совсем другая история.
Нефтяники любят высокое давление и не любят низкое давление, потому что давление – это накопленная энергия, которой можно воспользоваться. Иногда нефть находится в месторождении под таким высоким давлением, что её, по сути, и качать не надо – достаточно добуриться скважиной до месторождения, и пластовое давление начнёт самостоятельно выталкивать нефть на поверхность: скважина даст фонтан нефти – только и успевай подставлять вёдра и тазики, нефть хлещет сама, без каких-либо затрат электричества на добычу!

Гкс что это в нефтянке

Давление тесно связано с таким показателем, как сжимаемость. Мысленно представим себе колбу, наполненную, например, газом. Пусть давление там равно атмосферному. Затолкаем туда ещё 1% объёма газа и посмотрим, как изменилось давление. Если у вас нет под руками манометра, придётся поверить на слово – изменится не очень сильно (вы удивитесь — но на на тот же 1%). Возьмите пустую бутылку 0.7 (можно взять полную и предварительно её опустошить, но тогда дальнейшие опыты могут столкнуться с проблемами) и убедитесь, что немного воздуха туда выдохнуть всегда можно: газ очень хорошо сжимаем, его сжимаемость велика. А вот если газ заменить на жидкость, попытка впихнуть ещё немного жидкости в полную колбу в случае успеха, скорее всего, закончится печально: давление вырастет моментально и очень сильно, потому что жидкость плохо сжимается, её сжимаемость мала.
Можно сказать, что сжимаемость позволяет накапливать упругую энергию сжатия в веществе, и именно сжимаемость гораздо больше, чем давление, определяет, сколько энергии в сжатой среде накоплено. Если сжимаемость велика, энергии можно накопить много. Если сжимаемость мала, энергии много не накопишь. Представьте баллон с манометром, показывающим 220 атмосфер давления внутри. Если эту энергию пустить в дело, например, засунуть в ракету, то высоко ли она полетит? Оказывается, всё определяется не тем, сколько атмосфер давления, а тем, что там внутри сжато. Если там воздух, ракета взлетит, а если только вода – не взлетит. Посмотрите, как летают пневмогидравлические ракеты и подумайте, зачем они “пневмо” и зачем гидравлические. Тот же самый принцип используется в гидроаккумуляторах в домашней системе водоснабжения – вода не позволяет накопить много энергии сжатия, чтобы не включать каждый раз насос, когда вы открываете кран, а газ – легко.

Сжимаемость нефти больше сжимаемости воды, но гораздо меньше сжимаемости газа, поэтому при добыче нефти, если не замещать доставаемый объём из месторождения чем-то ещё, пластовое давление очень быстро падает. Ещё, когда говорят о сжимаемости, нужно держать в уме, что при наличии породы и различных насыщающих агентов (воды, нефти, газа), сжимаемость (разная) есть у них всех, и кроме этого, можно говорить об общей сжимаемости всей этой системы.

Газовая шапка на месторождении часто играет ту же самую роль аккумулятора, что воздух в пневмогидравлической ракете, поэтому случайно стравить газовую шапку месторождения – значит потерять ту значительную часть энергии, которая могла бы выдавливать в скважины нефть, а еще к тому же пустить нефть туда, где раньше был газ. А всем известно, если пролить куда-то сметану из банки, а потом попытаться собрать ее обратно, чтобы мама не ругалась… часть сметаны обратно собрать не получится, и с нефтью то же самое.

В следующей части мы расскажем, как месторождения образовывались, что с ними происходит в процессе добычи, а также изучим физико-химические свойства нефти, воды и газа.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *